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l'"ig. 2. --Temperature !'.v. time in triple point temperature of 
T2O: Run 3. 

diately after the preparation in order to minimize any small 
effects arising from tritium peroxide produced by the action 
of /3-rays on the T2O. The agreement of the three values, in 
spite of the presence of the material as liquid during part of 
the measurements, and the time lapse before the third de­
termination, make it seem likely that such an effect is neg­
ligible. This conclusion is in accord with reasonable esti­
mates of peroxide concentrations likely to exist, based on 
analyses of the decomposition gases of solid and liquid T2O 

An experimental method for studying free diffu­
sion in liquids, based on the Gouy interference 
phenomenon,3'4 has recently been developed and 
shown to be useful either for precision determina­
tions5"7 or for rapid measurements.8,9 While the 
original theory for this method10 represented a good 
approximation to experimental conditions, its use 
of simple quadratic and cubic expressions to 
approximate the wave optical phase difference 
function did not allow accurate calculation of the 
relative fringe intensity distribution nor did it 
provide an estimate of the resulting error in the 
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made in other connections. In correcting the observations 
for the hydrogen content, the percentage tritium was as­
sumed to be 99.35. This is an average of the original com­
position of the gas and the composition of gas collected 
later from the T2O decomposition. The corresponding un­
certainty in the triple point temperature amounts to 0.007°. 
From the above measurements, the triple point tempera­
ture of tritium oxide is taken to be 4.49 ± 0.02°. 

Prior to the measurements described above, a similar ex­
periment was performed with deuterium, providing a test 
of the preparation system, particularly with regard to hydro­
gen contamination, as well as of the triple point apparatus. 
The preparation system was pretreated several times with 
deuterium. The triple point temperature was found to be 
3.81°, in good agreement with the measurements of Taylor 
and Selwood2 (3.82°), La Mer and Baker3 (3.80°), Eucken 
and Schafer* (3.80°), Long and Kemp5 (3.52°), and Stok-
land6 (3.813°). 

The progressive increase of the triple point temperature 
in going from H2O to T2O is probably connected, at least in 
part, with an increasing strength of the hydrogen bonds in 
the solid, which is in turn to be associated with a decreasing 
zero point vibrational energy. This effect in the solid 
dominates over the oppositely acting effect in the liquid. 
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(6) K. Stokland, KgI. Norske. Videnskab. Selskabs, Forh., 10, No. 39, 
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Los ALAMOS, N E W MEXICO 

fringe position equations. Both of these limitations 
are removed in the following development which 
by utilizing a general series expansion for the phase 
difference function yields series expansions for 
both the fringe system intensity and the fringe 
position equations. The relation of the previous 
theory to these expansions is indicated, and a 
comparison between them reveals that under 
certain conditions the latter must be used in order 
to obtain accurate diffusion coefficients. In addi­
tion, the following development is not restricted 
to Gaussian diffusion boundaries and may be ap­
plied to any non-Gaussian symmetrical boundaries 
or skew boundaries for which the phase difference 
function is known. 

The Phase Function and Amplitude Equation 
In the Gouy phenomenon monochromatic light 

of wave length X from a horizontal source slit S, 
Fig. 1, is collimated by lens Ui and focused by lens 
U2 to form a slit image in plane P. The diffusion 
cell, C, when filled with homogeneous liquid of 
refractive index W1, Fig. Ia, has no effect on the 
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Fig. 1.—The Gouy diffusion apparatus showing (a) the 

straight wave front, Fi, obtained when homogeneous liquid 
fills the diffusion cell, C, and (b) the distorted wave front, 
F2, resulting from a diffusing boundary in C. 

shape of the wave front, Fi, between the two 
lenses. With a freely diffusing boundary present 
between two regions of refractive index n\ and w2, 
where «2 > »1, the wave front F2, Fig. Ib, is seen to 
suffer a non-uniform retardation. If the cell 
thickness, a, and the refractive index gradient are 
both reasonably small the magnitude of the retarda­
tion at a given level, x, is an where n, the refractive 
index of the solution, depends on both time and x. 
This deformation of the wave front produces inter­
ference fringes in plane P below the undeviated 
slit image, and their position likewise is a function 
of time. 

At a given time, /, after formation of the initially 
sharp diffusion boundary, the light intensity, 
IiY), at a level Y below the slit image is given by11 

/ ( F ) - W * (1) 
where the amplitude, ^, is obtained from 

i> = Kfe**(x) g(x) dx (2) 

and its complex conjugate, \p*, is obtained by re­
placing i in this relation by — i. Since e -*'*<*) = 
cos $(x) — i sin $(x), it will be noted that apart 
from differences in notation this relation for ^* 
is equivalent to equation (17) of the previous 
theory10 except for the addition of a cell masking 
function, g(x). Only for the special case of a sym­
metrical boundary, with symmetrical masking, is 
\f/* equal to \f/. The proportionality constant, K, 
in equation (2) will not be further determined, and 
the integrals are taken over the entire wave front. 
The origin of x is taken at the level where dn/dx is a 
maximum, and similarly the phase difference func­
tion, <£(x), is defined relative to a path through the 
maximum gradient of n, where n = nm. This 
convention allows the equations to apply con­
veniently to skew, as well as symmetrical, bound-

(11) J . C. .Slater and N". H. Frank, "Introduction to Theoretical 
Physics," McGraw-Hill Book Co., New York, N . Y., 1933, p. 311; 
G. Joos, "Theoretical Physics," Hafner Publishing Co., New York, 
N. Y., 1934, p. 36.3 ff. 

aries. Adding phase differences due to the solu­
tion and air paths, we obtain 

<*>(*) = (27r/X)[a(» ~ nm) - x sin (arctan Y/b)\ (3) 

or 
*(x) = (2w/X)[a(n - nm) - xY/b] (4) 

with reasonable precision when Y/b < 0.01, where 
the optical distance, b, is measured from the focal 
plane, P, to the nearer principal plane of lens U2. 
A small value of Y/b also ensures that ray bending 
in the cell will be small, so if a is also small n will 
be essentially constant over each light path through 
the cell as required by this form of the wave front 
retardation term. 

The Path of Integration.—While $(#) is a real 
function in equation (4), its expansion into the 
complex plane, as illustrated by the Taylor ex­
pansion 

*(* + iy) = *(x) + iy^\x) - ('AOy2*11^) -
(73!>y* in(x) + . . . (5) 

is necessary for convenient integration of equation 
(2). The path of integration which will be followed 
in the x,y-plane between cell mask positions Ji and 
J2 is shown in Fig. 2. Associating subscripts 1 and 
2 with negative and positive values of x, respec­
tively, there will be two saddle points,12 Si and S2, 
at values of x determined by $J(x) = 0, for every 
value of Y in the range 0 < Y < Ct = ab(dn/dx)ma.x. 
Since normals to the wave front at these levels will 
be focused at Y by lens L2, it follows that light 
traversing the cell at the level of a saddle point 
will contribute most to the amplitude at Y. In­
tegration of equation (2) along paths Bi and B2 
over these saddle points provides the contributions, 
I/'B, and ^B2, of the diffusion boundary to the ampli­
tude at Y. For these integrations the masking 
function, g(x), of equation (2) is set equal to unity 
since the positions of closest masking, Lx and L2, 
are assumed to be beyond the boundary in the 
region where dn/dx is essentially equal to zero. 
Since the integrand becomes nearly zero in the 
valleys, which are shown as shaded regions, into 
which paths Bi and B2 descend, the exact path of 
the dotted line connecting them is unimportant. 

Fig. 2.—The path of integration between cell mask positions 
Ji and Jz in the complex plane (x,y). 

When horizontal straight-edged masks are placed 
at levels Li and L2 their contributions, \f/Ei and 
^E2, to the amplitude are obtained by integrating 
along paths Ei and E2 from the mask positions into 
the valleys where, as before, the integrand is nearly 

(12) H. Jeffreys and B. S. Jeffreys, "Methods of Mathematical 
Physics," Cambridge University Press, Cambridge, 1950, p. 503. 
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zero and connections to B 1 and B2 may be made 
along any convenient pa th . Along paths Ei and 
E2 g(x) is set equal to unity, but along the x axis 
beyond Li and L2 g(x) must equal zero since in this 
case all light is cut off by the mask and the total 
amplitude, a t level Y becomes XpU1 + 5AB1 + ^ B 2 + 

Other masking cases may be considered by letting 
g(x) equal zero only when x < Ji and x > J 2 and 
designing the mask so g(x) decreases from unity to 
zero between L2 and J2 and between Li and Ji . 
Then the contributions ^ M 1 and ^M, for paths Mi 
and M2 do not equal zero and must be included. 
Requirements which g(x) must satisfy in this 
region if disturbances of the Gouy fringes by the 
cell mask are to be minimized will be discussed 
below in a section on masking. 

The Phase Function for Ideal Diffusion.—To 
obtain a complete solution of equation (2) n must 
be expressed as a function of x in equation (4). 
Following the notation of the original theory10 

for a single solute which diffuses ideally, producing 
a Gaussian boundary, and assuming tha t the index 
of refraction of the solution varies linearly with the 
weight of solute per unit volume of solution 

n = »m + [(«2 - »i)/vV] J V s = d/S (6) 

where 
s = x/(2 VDT) (7) 

Here D represents the diffusion coefficient and t 
is time since formation of the initially sharp 
boundary between the two solutions. Defining 
the experimentally determined total number, j m , of 
fringes by 

j m = c(«2 — Hi)/X (8) 

and 

Ci = ab(dn/dx),m% = ./„ \b/(2VirDt) (9) 

the phase difference function, equation (4), for this 
case becomes 

*(x) = <f(z) ~ 2V-"./Ji \ *c-P Ap - .-1'/C1I (10) 

An examination of the maxima of equations (4) 
and (10) indicates that , for any boundary, at a 
given time Ct is the greatest downward displacement of 
light in the focal plane, P, predicted by geometrical 
optics. 

Although the above derivation has been for the 
case of collimated light through the diffusion cell, 
the phase difference function represented by equa­
tion (10) also applies to the case where lens U2 

is omitted and a single long focus lens at the position 
of Ui is used to focus the source slit.10 In the single 
lens apparatus, however, the boundary should be 
located on the optic axis and b is measured from the 
focal plane to the center of the diffusion cell. 

The problem is to solve equations (2) and (10) 
for Ct in terms of the downward displacement, Yj, 
of any fringe numbered j , since when Ct is known 
the diffusion coefficient, D, may be evaluated from 
equation (9). Here j = 0, 1, 2, . . . with the lowest 
fringe assigned the number zero. The interference 
condition derived for intensity /.eras in the original 
theory10 was 

(J + 3A)An = ffo) = ( 2 / V * ) [ f V / 3 ' d / ? - zie-x*] 

(U) 
where Zj denotes the value of z for fringe numbered 

j . After determining f (%) from j and j m , the corre­
sponding value of e ~z>' was obtained from a table of 
e~z'1 versus f (z,-) and Ct calculated from the relation 

Yi/Ct = e - s ; ! (12) 

which is derived by setting the first derivative of 
equation (10) equal to zero. One result of the 
present work is the derivation of correction terms 
for (j + 3/4) in equation (11). 

Integration of the Amplitude Equation for the 
Diffusion Boundary 

The following integration procedures allow the 
computation of the amplitude and the interference 
conditions whenever the phase function, $(x), 
is known. In some experimental cases equation 
(10), or even equation (4), may not be sufficiently 
accurate; for example, the assumption tha t n is 
linear with the solute concentration may be poor or 
a may be so large tha t n changes appreciably over a 
given path through the cell. Correct results may 
then be obtained by applying the following integra­
tion procedures to the corrected phase function. 

Expansion in Airy Integrals.—Before solving 
equation (2) by integrating over the saddle points 
indicated in Fig. 2, an alternative method of solu­
tion will be presented. A general approach would 
be possible by expanding the phase function, 
$(x) , as a Taylor series about the origin and then 
writing equation (2) as a series in the Airy integral 
and its derivatives. This procedure is useful for 
only the lower fringes, however, and only the special 
case of ideal diffusion will be treated by this method. 

Expanding equation (10) as a power series in z, 
and substituting 

t = (2%/*/'.»)°/. (13) 

« = t\(Y/L\) - 11 (14) 
and 

H - 26</2 (15) 

the contribution of the diffusing boundary to the 
amplitude, equation (2) may be written 

2V(DTR)K r e - , ' ( a " + H e - ' ( - ' i & + i ^ ' - 2 i 5 ; . + - ) d u 

(16) 

Expanding the second exponential as a series, 
deforming the path of integration up to the re-
axis, and defining the Airy integral by 

Ai(a) = [1/(2*01 P <r i(a"+3 !")dtt (17) 
J _ CO 

so its derivatives become 

Ai-(a) = [ (—?>)/ (2TT) | \ " «"e""'VaM + 3"7d« ( i s ) 

equation (16) reduces to the asymptotic expression 

A is /T^7T\K; S A>V(") 1 rAiVI I(<2) 

Aix(<vf| .1 TAi I X(«) Aix"(oQ Aixv(o:)"| / 
~2on' J - " <3 L 214 """420" 6000 J ' " i 

(19) 
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Successive applications of the recursion formula 
Ai-" (a) = (m - 2)Aim~'(a) + aAi"*-2(a) (20) 

which may be derived from the differential equation 
2 n = xq (21) 

satisfied by the Airy integral, provides the final 
expression for the amplitude. Substitution 
equation (1) yields the intensity relation 

H>-5+?(T + 

in 

I(Y) = (16K2K2Dt/<•) 

-)-l-C 
200 / «3 V 

47 2347a3 

675 + 9450 T 14000/ ^ 

AiT( o[-£ + U £ + ^ -10« «2 V105 T 105/ 
1 /1223 a 1163a4 

C8V 4725 + 18900 ^ 6000/ + • (22) 

for the lower fringes of a Gaussian boundary when 
diffraction from the cell mask is neglected. 

The interference condition for intensity zeros is 
obtained by replacing Ai(a) and Ai1Ca) by their 
Taylor expansions about OCJ where ctj is defined by 
Ai(a,;) = 0, and the new variable is denoted by 

{ = « - < * , • (23) 

Setting the intensity equal to zero, eliminating 
derivatives of Ai(a) higher than the first by equa­
tion (20), and solving for £ by successive approxi­
mations 

â j _ 17(10 + a>j) 30560a,- + 1019aj 
? 1Oe 1050«« 189000«3 

(24) 

Combining this result with equations (14) and 
(23) we have the interference condition provided 
by this Airy integral expansion 

Xi _ i 4. S +*l _ 17(10 + a3,-) 

(25) 

10«2 1050e3 

1019[(30560/1019)aj + a*,-] 
189000«4 

where Yj denotes values of Y for the j'th intensity 
zeros. Using an approximate coefficient for a,-
in the fifth term and replacing e by j m according to 
equation (13) 

Ki = c, 1 + 0.430127 

0.001288 + 

+ 0.018501 
U)V. 

(10 + «'*) j . 0 ,Q 0 0 1 8 5 (30«/ + «'<) (26) 
(jmy/, ^ — (Jm)»A 

Solutions of this equation are readily obtained using 
the roots, aj, of the Airy integral. The first 50 
roots have been tabulated to eight decimal places 
and published by the British Association.13 Ap­
proximate values for the first five roots are given in 
Table I so the relative magnitude of the terms in 
equation (26) may be readily observed. Values of 

TABLE I 

ROOTS OP THE AIRY INTEGRAL 

. / 0 1 2 3 4 

aj - 2 . 3 3 8 - 4 . 0 8 8 - 5 . 5 2 1 - 6 . 7 8 7 - 7 . 9 4 4 

D are then computed from equation (9) by inserting 
Ct from equation (26), subject to the possible neces-

(13) "The Airy Integral," British Association for the Advancement 
of Science Mathematical Tables, Part-Volume B, University Press, 
Cambridge, 1946. 

sity of extrapolating to 1/t = 0 if the initial bound­
ary was not sufficiently sharp.14 

Integration by Method of Steepest Descents.— 
Since the minimum and maximum of equation (4) 
become saddle points (Fig. 2) for the integrand, 
e>*(*)t when $(x) is expanded into the complex 
plane, asymptotic solutions of equation (2) may be 
derived by the method of steepest descents12 when 
Y lies in the range O < Y < Ct = ab(dn/dx)m^x-
First, a general solution for the amplitude will be 
obtained which is valid for any phase difference 
function for diffusion, <f>(x); then the results will 
be specialized to the case of a Gaussian boundary. 

Using subscripts 1 and 2 to identify the following 
quantities with the minima or maxima, respectively, 
of $(x), denoting the modulus about these points 
by f, and setting g(x) = 1, the contribution of the 
diffusion boundary to equation (2) becomes 

K 
= 1.2 J -

exp[«*(zt+e»<»*r)](e»»*d£) (27) 

where 6 is the polar coordinate, to be assigned a 
convenient value later, measured counter-clockwise 
from the positive direction of x. Expanding <i>() 
as a Taylor series about Xk, and remembering that 
$x(xi) = $l(x2) = 0, either integral of equation 
(27) may be written 

I exp i< [*" (*t)e«9*fY2] + 4>Bk - Ke'l*(xt)+H\ 

Y, l*mfe)e™«*r/»»!]>dr (28) 
m = 3 ; 

While this integral could be evaluated by expanding 
CD 

exp » ^ ] a s a power series in f, it is more con-

venient to obtain an automatic grouping of terms 
according to inverse powers of j m by the following 
method. Defining v by 

*n(**)e2«-s**Y2 = < [$u(**)e2i0*f2/2] + 

Y [im{xk)emiH^/m\}K (29) 
tn = 3 ) 

we may write 

t = v/Vpl (30) 
where 

pk = <1 + [2e-2»'»*/*n(*t)] Y [*"*(**)<*»>»Hm-1Zm!] > 
I m = 3 ) 

(31) 

Lagrange's method for inverting a series16 then 
gives 

r-E^r^T (32) 

£1 ^r- 1 I /* Jf=o 
and 

« - t (T^T, d7̂  [ ^ L o d» (33) 

(14) L. G. Longsworth, T H I S JOURNAL, 69, 2510 (1947). 
(15) Whittaker and Watson, "A Course of Modern Analysis,' 

Cambridge University Press, Cambridge, 1927, p. 133. 
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it is seen from equations (40) and (41) tha t Ft = 
F2 and W\ = -Wi, so the intensity equation for 
any symmetrical diffusion boundary reduces to 

" ir-» d'"» r 1 / (F) = 4A2[F2cos7 2 - JF2sin7 2p (46) 

L-, (r~^TJ! dT""1 L ^ t _ r / J f = od t ' ^34^ Finally, consider a Gaussian boundary in which 
r=1 the refractive index is given by equation (6). 

Since $ n (x i ) > O and $u(x2) < O it is seen t ha t by Since 
assigning the values z, = x,/(2V~Dt) (47) 

Oi = + */i.e-i = —IT/ (So) simplification of equation (46) may now be ob-
all terms in the series may be integrated by the tained by substituting <pm(Zi) for $m(.r2) according 

to the relation relationship 

J " f-"1 e~«l! dv = 

(O if r = 2,4,6, • • • 
\ (r - l)ly/¥/c if r = 1,3,5, 

(Kr - r)/2l!(4c)''--"/» 

Substi tuting 

r - 1 = 2.v S = 0,1,2, • • • 

equation (34) becomes 

(•36) 

m 

*»'(.v2) = {2VDt)~m
v
m{z«) (48) 

The factor (2\/Dt) cancels out of all bu t the square 
root terms in F2 and Wi. The derivatives, <pm(zi), 
where m = 2, 3, 4, • • •, are obtained by differentia­
tion of equation (10), while 72 is determined by 
substituting the relation 

YfC1 = e-z* (49) 

for maxima in equation (10) back into tha t equa­
tion giving 

72 = TJmi(Zi) - -K/I (50) 

The function f(z) is denned as before by equation 

, ., , . . ,, , . , , ,•.,,.'„ „, Denning 0 as positive so the subscripts, 2, may be 
After solving for the derivatives ot / V ^ + 1 ' 2 \ the d d & f c o n v e n i e n c e i t h e final expression for 
expression 
^B/A" = e'l*<n)+^/*KVi 4- 1IF1) + 

<.»[#(«)-»/*]( F2 4- JH'S) (39) 

is obtained for the amplitude where16 

I ^LL \ H. -u+1/2)I c-joi 4 

j r = 02*(s!)[(- i)*- i* , ic.-v: i . ) j 'dr a ' L^ J f - O w ; ( 

F* = 
2*- "1 VM _ 385 1 r / $ m y 

1 8 (5"1J2*1^' _j_ 3 / * I V \ 2 24 4-'"$' ' _ 
iT ~ (* l !> ' : IT V*Ti7 55 (* l f)2 

the fringe intensity for an ideal diffusion becomes 

/ ( V ) = 4A'2f FcOs[TJMf(Z) - W/4] -

IF sin [irjj(z) - JT./41J2 (51) 
where 

385 
F = 2V-D/- h -

1A [~ 1 - ^ ( ^ " ' ^ + 

IF = 2 V M - 1 A f - -^(,/,J-S)-I171(Z) + 
24 *^ 
385 * ' 

4- (40) 

and 

IFt = 

85085 
L("-Tj*-i*"J ( + 24 i 1 1 LV *" / 5 i>"J 

1 FY*--Y - 45Ci1J1)4*"" • n ) 3 L v * i i y "17"" (iiTf + 

21 V*11"/ 
1944 / * v y 

60775 \ * T l / 

in which 
Si^-'-w 

ft = (2/Vx)Be-Z2Jn, 
9 

82944 (* 
27(*U I) a(* I V)2 

4 > (41) 

17 ( * u j 6 

72 j * ^ 1 ) 1 * 1 ' _ 27 / * I V V 
f7 ~ (*Tiy~" ^ 8 5 ~ T * l l T r 221 
•648 *i»$"'.|>v 216 (J-111)**" _̂ 1944 / * v 

1105 ( - J - 1 1 I 3 - I i O s ' (¥lYT3~ ' 
648 *^'*VI j _ 2592_ j - ' " » V I 1 _ 

12155 (<*>".̂  "̂  85085 (*"> " 

85085 * f r J 
Defining 

7* = * ( . r t ) +• 9, (42) 

the intensity, equation (1), for any diffusion boun­
dary becomes 
/(V) = K-\ V\ 4- Wi + Vl + Wl + 2[ViV2 + 

IFiTF2] cos (7i! - 71) - 2 [F,H'o - IF1F2] sin (7, -

7 i )! (43) 
Imposing the restrictions tha t 

*m(.ri) = -$>m(x->) m = 0, 2, 4, • • • (44) 
and 

<t>m(x,) = *'"(*/) w = 1, 3, 5, • • • (45) 

(lfi) To simplify the notation in equations MO) and M!) $ m i* 
used to denote Vl(xk) 

adz) = ! 
6 

T1(S) - 1 -

_ 4 „•> _ 1 I 
53" 385 

92 + " s 4 

5 
3 2 6 , 

3 0 

(52) 

(53) 

(54) 

(55) 

- ^ i - ' (56) 
385° ( 0 b ) 

_948 4̂ _ 4744 6 

1925 3 425425 Z 

8544_ t 

425425! 
20352 ^ . . 7 1 1 6 S 8 1 . ( 5 7 ) 

425425 425425 
The interference condition for zeros of intensity 

is obtained by setting I{Y) = 0 in equation (51) 
giving 

tan 7r[Jmf(z) - 1A] = VfW (58) 

and expanding as an arctan series 

TTIMKZ) - 'A] = U + 1A)T - (WfV) + 

(1A)(TFZF)3 - ••• (59) 

where j = 0,1,2, • • • . Defining 

R(z) = (3vV4)f(z)z-3e*! = (3T/2)[jmf(z)i/(.Trhz') (60) 
which approaches unity as z approaches zero, WfV 
may be written 
W 5 R(Z)1T1(S) _85085 _ |~ , , 
F 72TI I/„,f(E) I 22.'19488!T3L 

1155 "1 IR(z)]3 ..... 
1 7 ( ) | . T1(Z)^(Z)J - [ 0 - ( ^ a (61) 
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Substituting in equation (59) gives the final inter­
ference condition for the case of a single, ideally 
diffusing, solute 

(62) 

7m i{zi ) = j + § + 0.0070362 T ^ ^ T , -
4 L7mf(Zj)] 

0.00036471 r P ^ S ' L + 

The subscript j has been added to denote the 
intensity zero numbered j , and 

G1(Z,) = R(2]>i(zy) (63) 
1155 

G2(Z/) = g j g [R(Z1)Y )*,(*) 
17017 

50 

(Ti(Zj)(Ti(Sj) + 

17017 Mz')]S\ 
(64) 

These quantities are given in Table II as a function 
Off (Zi). 

TABLE II 

VALUES OF THE FUNCTIONS GI(ZJ) AND G2(ZJ) FOR U S E IN 

EQUATION (62) 

f(2j) O1(Bj) Oj(Jj) 

0.00 1.000 1.000 
.05 1.052 0.993 
.10 1.150 .980 
.15 1.292 .959 
.20 1.484 .925 
.25 1.737 .866 
.30 2.065 .754 
.35 2.487 .526 
.40 3.032 .044 
.45 3.739 - 0 . 9 9 8 
.50 4.664 - 3 . 2 9 4 
.55 5.892 - 8 . 4 7 8 
.60 7.557 - 2 0 . 5 7 8 
.65 9.874 - 5 0 . 2 1 
.70 13.221 - 1 2 7 . 9 6 
.75 18.305 - 3 5 3 . 5 7 
.80 26.618 - 1 1 1 4 . 9 
.85 41.844 - 4 3 8 5 . 3 
.875 54.96 -9954 
.90 75.85 -26107 
.925 113.11 -86087 
.95 194.20 -430680 
.975 468.44 -5915500 

Equation (62) is readily solved for f(zj) with the 
aid of Table II after one or two successive approxi­
mations. The quantity e~z*' is obtained from i(zf) 
by means of tables of these functions, and Ct, 
computed from equation (12) as before,10 may then 
be substituted in equation (9) to evaluate the 
diffusion coefficient, D. 

Integration of the Amplitude Equation for the Cell 
Mask 

It remains to determine g(x) so that disturbance 
of the Gouy fringes by diffraction from the masks 
at the ends of the cell will be minimized. Since a 
general treatment with unsymmetrical masking 
would lead to essentially the same form for g(x), 
the notation will be simplified by considering 
identical masks placed symmetrically about a 
symmetrical diffusion boundary so g( —x) = g(x), 
-Ji = Ji = J, and -Li = L2 = L. Simple 
solutions of the amplitude equation are then ob­
tained if it is assumed that the masks are placed 

beyond the boundary, where n is essentially con­
stant with x, and if only values of Y removed from 
F = O are considered. 

The contribution, 4>n = fe + "AE2, to the ampli­
tude at Y from paths Ei and E2, Fig. 2, is obtained 
by integrating equation (2) in the form 

'e-«'Wm-«a-«»' a ir)]( e
, '0 ldf) + 

K I e»'Wm-»(i-re ,Q!f)](eiB.df) (65) 

r' 
|/<E= K I 

Jo 

where f denotes the modulus about — L or L and 
oj = 2irY/(\b). Since fii and Q2 lie between 0 and 
— x this expression reduces to 

<PB = -2-ST[SHi (Wm - oL)]/u (66) 

Between \x\ = Land \x\ = /whereg(x) decreases 
from unity to zero the amplitude contribution, 
^M = ^M1 + '/'Ms, IS 

fc = Jf I g(.r)e'(-^'m-'"c)dx + 

K I g(*)e»'Wm-u*)dx: (67) 

or 

^M = 2-fiT I g(x) cos (7r7m — ux)Ax (68) 

Integrating by parts and letting S = (ir/'m — ux) 
I g(x) sin 5 g!(x) cos 6 g11 (x) sin S 

VM = 2A 1 — 1 —. 

gllI(x) cos S g 'v(x) sin S 
X = J 

+ (69) 

C = / . 

providing the derivatives are continuous. 
Neglecting the periodic function in the numerator 

it is seen from equation (66) that in the region 
|w| > 1 diffraction from a horizontal, straight-edge 
mask for which g(x) has the form shown in Fig. 3a, 
is related to Y by the proportionality 

^ E = I / F (70) 

L1 

-J 

-U 

-g(x) 

L 

-J 

-g(x) -g(x) 

X X X 
3a 3b 3c 

Fig. 3.—Three illustrative masking functions, g(x), repre­
senting (a) horizontal straight-edge masks at — L and L, (b) 
an improved masking function, and (c) the approximate 
form of the best masking function. 

When g(x) is linear instead of zero in the region 
L < x < J, as illustrated in Fig. 3b, the first term 
in ^M cancels I//E and 

^E + v̂M * i/v (7i) 
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This corresponds to the use of straight-edged cell 
masks placed at an angle to the horizontal.14 

Further inspection of equation (69) indicates that 
diffraction from the mask may be minimized in the 
region below a> = 1 by selecting a mask such that 
the first m derivatives of g(x) where m is made as 
large as possible, are continuous between L and J 
and equal to zero at L and J. Figure 3c shows the 
approximate form of this ideal masking function. 
Either a variable density absorption mask or a 
curved, opaque, mask may be used to produce the 
desired form of g(x). 

Discussion 
It is of interest to compare the expressions for 

fringe intensity and position derived using the 
Airy integral with those obtained by integrating 
across the saddle points. Following this com­
parison, which provides a test of the present de­
velopment, the relations between these equations 
and those of the previous theory6'8'10 for the Gouy 
method will be shown. The necessity of using this 
extended theory in order to obtain accurate values 
of D when j m is small will then be illustrated by 
comparing values of e~V obtained from this theory 
with those obtained from the previous theory. 

Comparison of the Airy Integral and Saddle Point 
Expansions.—A numerical comparison of these two 
integration procedures is presented in Table III, 

TABLE III 

COMPARISON OF COMPUTED RELATIVE INTENSITIES FOR THE 

LOWER FRINGES OF AN IDEAL DIFFUSION 

jm = 100 

-«*-r/c, 
1.00000 
0.99640 
.99193 
.99005 
.98571 
.98324 
.98059 
.97775 
.97473 
.97151 
.96812 
.96454 
.96079 
.95685 

.95275 

.94847 

.94403 

.93941 

.93463 

.92969 

.92459 

.91934 

.91393 

.90837 

.90267 

.89682 

.89083 

.88470 

10i(F)/(16D«K») 
Airy" 

0.2483 
.3183 
.4110 
.4491 
. 5253 
. 5558 
.5732 
.5698 
.5382 
.4722 
.3724 
.2479 
.1218 
.0275 

.0016 

.0629 

.1918 

.3215 

.3624 

.2676 

.0965 

.0003 

.0847 

.2595 

.2935 

. 1210 

. 0002 

. 1395 

101 (Y)/(.16Dl KK 
Saddle point ̂  

15.06 
2.458 
0.5632 
. 5209 
.5291 
. 5339 
.5134 
.4630 
.3640 
.2441 
.1203 
.0273 

.0016 

.0629 

.1918 

.3214 

.3624 

.2676 

.0967 

.0003 

.0847 

.2.594 

.2935 

.1210 

.0002 

.1393 

which lists some computed intensities in the lower 
fringes formed by a Gaussian diffusion boundary. 
It is seen that the saddle point method, equation 
(51), begins to diverge as expected when Y -*• Ct 
(i.e., e~z' -*• 1), but its agreement with the Airy 
integral expansion, equation (22), for this case 
where jm = 100 is excellent for the next two fringes. 
If j m is decreased the error in both calculation pro­
cedures increases, though the Airy integral method 
will continue to give the best results for values of 
Y near Ct. Further up the fringe system the 
situation should be reversed, with the saddle point 
method giving a better result than the Airy integral 
expansion. The intensity distribution in the "tail" 
of the lowest fringe, where Y/Ct > 1, may be com­
puted from equation (22) while the saddle point 
method completely breaks down in this region. 

The close relation between interference condi­
tions (25) and (62), derived from the Airy and the 
saddle point expansions, respectively, will now be 
shown. Expanding f(z), equation (11), as a power 
series in z and using Lagrange's method15 to invert 
the series gives 

F, , 1 , , 31 . . 463 . , 
9450 '] (72) 

5 ' 350 

where w is defined by 

w = [(3ViWf(Z)]V. (73) 
From equations (49) and (72) the relative down­
ward displacement as a function of w becomes 

VfC1 
1 17 

1 — ui2 4 w4 -\ w* 4-

1019 
189000 uP + (74) 

which is similar in form to the Airy interference 
relation (25). To show the exact relation between 
the saddle point and Airy interference conditions, 
a series giving w2 for intensity zeros must be ob­
tained from equation (62), which in terms of (j 
+ 3/4) becomes 

f(,)=U-3 / 4jl + 
G1(Z1) 

..I 
V72W a + 3/4)2 

(T£0'I>"> + f 0 HCTFW + 

By substituting 
Pi = (3ir/2)(j + 3/4) 

into this expression equation (73) may be written 

« I • + 48 p,« 

(75) 

(76) 

36 L 
35Gf(z/) + 221G2(Z,) 

256 ]£ + .[ (77) 

for fringe minima where € is defined by equation 
(13). From equations (63), (64) and (72) the 
series expansions 

G1(Z;) 

and 

272 
1 + 1 7 5 ™ < 

96 
G , ( S , ) - 1 - 4 5 5 w / 

, 2096 
^ 1 1 2 5 ' 

4192 

+ 

16575 

(78) 

(79) 

are obtained which allow the following solution for 
Wj-. 
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A COMPARISON OP REPRESENTATIVE VALUES OP e 

TABLE IV 

"*' s OBTAINED USING DIFFERENT EQUATIONS TO EVALUATE f(z,) 

. - * , » 
-f(*y) = (j+3/4)/jm°-

i ' 
H: 

0 
1 
2 
3 
4 
50 
96 
97 

Jm - 100 

0.95393 
.91919 
.89106 
.86643 
.84402 
.30028 
.01245 
.00832 

Jm - 10 

0.78978 
.63706 
.51751 
.41603 
.32703 

Jm = 6 

0.70739 
.49954 
.34112 
.21119 

Jm = 100 

0.95355 
.91907 

-f(»,)from eq. (62)" 

"Quarter wave' 
equation (11) of ref. 6. 

,-ViT. . 5 

86638 
84399 
30028 
01245 
00832 

approximation, equation (23) of ref. 10. 

; ) — ^ j Y J m ' ' 

Jm = 1 0 Jm = 6 Jm - 100 Jm - 10 Jm •» 6 

0.78821 0.70522 0.95355 0.78808 0.70476 
.63653 .49885 .91907 .63634 .49812 
.51724 .34075 .89098 .51699 .33969 
.41585 .21097 .86638 .41555 .20925 
.32690 .84399 .32651 

.30027 

.01234 

.00814 
6 Airy integral refinement of "quarter wave" approximation, 

Saddle point interference condition, equation (62) of this development. 

if' + n 
105«8 + 
+ (80) 

„. B£ll Tl + _ 5 L. 4. 1 
' « L 48p2,- 36p<; "•" " J 

675e< L 48p3
2 

Substitution of this expression for Wj2 into equation 
(74) gives the saddle point expansion for Yj/Ct 
for fringe minima of an ideal diffusion, which is 
identical with equation (25) from the Airy integral 
expansion providing aj is defined by 

"'--""t1+^-^+"-] (81) 

Since this is, in fact, the asymptotic expression for 
the roots of the Airy integral,13 equations (25) and 
(62) are seen to be in agreement. 

Comparison with Previous Theory.—Two identi­
cal Airy integral relations for intensities in the 
lower fringes of Gouy patterns were derived previ­
ously by dropping higher terms in the phase differ­
ence function leaving a cubic expression with the 
proper slope at the origin.17 The present Airy 
integral development retains more terms in the 
expansion of the phase difference function about the 
origin thereby providing a refinement over the 
previous relations, which correspond to only the 
first term, Ai(a), of equation (22). The fringe 
position equation of Coulson, et a/.,18 for the lowest 
intensity zero is seen to be identical with the first 
two terms of equation (25). 

To obtain reasonable accuracy further up the 
fringe system quadratic or cubic expressions were 
used previously to fit the phase difference function 
at its origin and maximum,6'10 rather than at its 
origin with the correct slope. The fringe intensi­
ties19 obtained by these approximations cannot be 
readily compared with equations (22) and (51), 
but the "quarter wave" approximation for intensity 
zeros20 which resulted from curve fitting with a 
quadratic is contained in the first two terms of 
equation (62). Furthermore, by setting Gi (zj) 
and Qi(zj) equal to unity instead of giving them the 
values in Table II, equation (62) reduces to an 
asymptotic series for the Airy integral refinement 
of the "quarter wave" approximation for intensity 
zeros.21 This correlation occurs because i(zj) 
must approach zero when Gi(Zj) and Ga(Zj) ap­
proach unity, and as f(z,-) approaches zero the 

(17) Equation (7) of ref. 8 and equation (27) of ref. 10. 
(18) Equation (9) of ref. 8. 
(19) Equations (22) and (28) of ref. 10. 
(20) Equation (23) of ref. 10. 
(21) Equation (11) of ref. 6. 

cubic approximation provides an excellent repre­
sentation of the actual phase difference function. 
Thus the present development confirms the validity 
of the Airy integral refinement of the "quarter 
wave" approximation for the lower Gouy fringes 
when j m is large. Both the "quarter wave" ap­
proximation and its Airy integral refinement are 
seen to be precise interference conditions for the 
central fringes when j m is large, since the correction 
terms in equation (62) become so small compared 
to j + 3/4 that they can be neglected. Close to 
the undeviated slit image the accuracy of both 
these approximate interference conditions de­
creases, since Gi(zj) and G2(Zj) become so large that 
the correction terms in equation (62) should be 
retained. 

When j m is small, Qi(zj) and Gi(zj) are appreci­
ably different from unity for even the lowest fringe 
and the correction terms in equation (62) must be 
considered in determining f(z,-) for every fringe. 
The numerical magnitudes of the errors which 
would otherwise be introduced are illustrated in 
Table IV which presents representative values of 
the normalized fringe displacements, e~*j!, computed 
from the "quarter wave" approximation, the Airy 
integral refinement of the "quarter wave" approxi­
mation, and the saddle point interference condi­
tion (62). These values for a 6 fringe system 
clearly illustrate the need for using the present 
theory to obtain accurate values of D from experi­
ments in which j m is small. No value is given for 
the 4th fringe because the convergence of equation 
(62) becomes poor this far up a 6 fringe system. 
When jm is increased to 10, values of e~*J! from the 
Airy integral refinement of the "quarter wave" 
approximation are seen to agree with those from 
equation (62) within 0.05% for fringes 0, 1 and 2. 
Either of these two interference conditions could 
therefore be used to calculate D to within 0.1% 
for these fringes, but equation (62) must be used 
to obtain this accuracy from the higher fringes. 

Table IV also illustrates that for a 100 fringe 
system the Airy integral refinement of the "quarter 
wave" approximation provides values of e~z'% for 
the lower fringes which are in agreement with values 
from equation (62), but which differ slightly from 
those of the "quarter wave" approximation. The 
three interference relations are in excellent agree­
ment for the central fringes, illustrated by the 
50th fringe, but the two approximate interference 
conditions become slightly in error as the 96th 
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and 97th fringes are approached. It is of interest 
to note, however, that the positions of fringes 96 
and 97 are predicted by the simple "quarter wave" 
approximation within the limits of the usual 
experimental error. 

In addition to these numerical comparisons with 

Introduction 
A nuclear electric quadrupole moment arises 

when the nuclear charge deviates from a spherical 
distribution. This permanent quadrupole moment 
can interact with a non-spherical extranuclear 
charge distribution to produce a variation in the 
electrostatic energy of the system with nuclear ori­
entation. This type of effect has been observed as 
hyperfine structure in the rotational spectra of gas 
molecules and more recently the direct transitions 
among these energy levels have been observed in 
crystalline solids in the radio-frequency region of 
the spectrum. 

In this work the pure quadrupole spectrum of 
chlorine36 has been measured in the chloroacetic 
acids and several of their derivatives. These spec­
tra are very sensitive to small changes in the gradi­
ent of the electric field at the chlorine nucleus and 
hence yield information concerning molecular bond­
ing and solid state effects. It has been found that 
such resonance lines are influenced by different 
crystallographic environment3 and intermolecular 
bonding in the solid state,4 and that marked differ­
ences in the chemical bonding of a given atom give 
rise to rather widely separated resonance lines. It 
is thus possible to obtain considerable information 
concerning molecular bonding in the solid from a 
study of these spectra. 

Experimental 
The spectra were observed using a frequency-modulated 

super-regenerative spectrometer similar to that of Dean 
and Pound.5 The frequency modulation was a 30 cycles/ 
sec. sine wave; this same frequency was applied to the hori­
zontal plates of the display oscilloscope. A square-wave 
quench voltage was used, the frequencies giving the greatest 
sensitivity being in the region of 50-100 kc. Samples were 
sealed in 2-dram vials which were inserted directly in the coil 
which formed part of the resonant circuit of the oscillator. 

(1) The research reported in this paper was supported in part by the 
Office of Naval Research under ONR Contract Noori-76, Task Order V. 

(2) Atomic Energy Commission Postdoctoral Fellow. 
i3) H. G. Dehmelt, Z. Physik, 130, 356 (19.51). 
iA) C. H. Tuwnes and B. P. Dailey, J. Chem. Phys., 20, 35 (1952). 
</») C. Dean and R. V. Pound, ibid,, 20, 195 (1952). 

previous theory it should be mentioned that for the 
lowest fringe, j = 0, the Airy integral interference 
condition, equation (26), yields the values 0.95354, 
0.78805 and 0.70474 for e"*/ = Yj/Ct when j m 
is 100, 10 and 6, respectively. 
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When making low temperature runs the sample and coil 
were immersed directly in the cooling bath. 

The frequencies were measured with a war surplus fre­
quency meter set SCR 211 AC. The frequency-meter 
peaks were superposed on the absorption peaks, a match 
being ascertained by finding the frequency-meter peak which 
remained superposed on the absorption peak as the quench 
frequency was varied. The frequency measurements are 
accurate to ± 5 kc. Temperatures were measured by a 
pentane thermometer and an iron-constantan thermocouple, 
both of which had been calibrated at the ice point, Dry Ice 
Point, and liquid nitrogen temperature. The temperature 
measurements are believed to be good to ± 1 ° . 

Where the absorption was strong enough, the resonance 
due to Cl37 was also measured. In other cases the region was 
searched where the Cl36 resonance would be expected assum­
ing that the observed absorption was due to Cl37. The ratio 
of the quadrupole moments of the two isotopes, Cl35ZCl37, 
found from these measurements agrees within the experi­
mental uncertainty with previously published values.6-6 

The CCl3COOH used was Mallinckrodt reagent grade, 
the (CH2ClCHO)3 was synthesized in the organic chemistry 
department, and the rest of the chemicals were obtained 
from Eastman Kodak Co. In each case the compounds 
were used without further purification. All samples of solid 
compounds were crystallized from a melt in order to ensure 
a maximum number of chlorine nuclei in the absorption 
coil. I t was found necessary to age the chloral hydrate 
sample prepared in this way for about three months and the 
(CHaClCHO)S sample for about six weeks before absorption 
was found. 

Experimental Results 
The experimental results are summarized in 

Table I. It should be noted that in several of the 
compounds multiple lines were observed. In 
cases where the splitting is small (<0.5 mc.) this is 
presumably due to crystallographically non-equiva­
lent chlorines, while the larger separations are pre­
sumably due to differences in the chemical bonding 
of the chlorine atoms. Since the frequencies are 
temperature dependent, they have been measured 
from liquid nitrogen temperature up to either the 
melting point of the compound or room tempera­
ture, whichever is lower. The temperature depend­
ence of the frequencies observed in the mono-chloro 
substituted compounds are plotted in Fig. 1. 

Although CCI3COOH is a solid at room tempera-
(Ui R. Livingston. Phvs. Jttv.. 82. 289 (1952). 
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Using a frequency-modulated super-regenerative spectrometer the pure quadrupole spectrum of Cl36 has been measured 
in the chloroacetic acids and several of their derivatives. In several of these compounds multiple lines are observed, which 
in the case of small separations (<0.5 mc.) are attr ibuted to crystallographically non-equivalent chlorines. In CCI3COCI 
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