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diately after the preparation in order to minimize any small
effects arising from tritium peroxide produced by the action
of B-rays on the T,O. The agreement of the three values, in
spite of the presence of the material as liquid during part of
the measurements, and the time lapse before the third de-
termination, make it seem likely that such an effect is neg-
ligible. This conclusion is in accord with reasonable esti-
mates of peroxide concentrations likely to exist, based on
analyses of the decomposition gases of solid and liquid T-O
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made in other connections. In correcting the observations
for the hydrogen content, the percentage tritium was as-
sumed to be 99.35. This is an average of the original com-
position of the gas and the composition of gas collected
later from the T:0 decomposition. The corresponding un-
certainty in the triple point temperature amounts to 0.007°.
From the above measurements, the triple point tempera-
ture of tritium oxide is taken to be 4.49 =+ 0.02°.

Prior to the measurements described above, a similar ex-~
periment was performed with deuterium, providing a test
of the preparation system, particularly with regard to hydro-
gen contamination, as well as of the triple point apparatus.
The preparation system was pretreated several times with
deuterium. The triple point temperature was found to be
3.81°, in good agreement with the measurements of Taylor
and Selwood? (3.82°), La Mer and Baker3 (3.80°), Eucken
and Schifert (3.80°), Long and Kemp® (3.82°), and Stok-
lands (3.813°).

The progressive increase of the triple point temperature
in going from H,0 to T20 is probably connected, at least in
part, with an increasing strength of the hydrogen bonds in
the solid, which is in turn to be associated with a decreasing
zero point vibrational energy. This effect in the solid
dominates over the oppositely acting effect in the liquid.

(2) . 8. Taylor and P. W. Selwood, THIs JoURNAL, §6, 998 (1934).

(3) V. K. La Mer and W. N. Baker, ibid., §6, 2641 (1934).

(4} A. Eucken and K. Schifer, Ges. d. Wiss. Nachrichten. Math.-
Phys. Kl. Fachgr. 111, N.F. Bd., 1, 109 (1935).

(3) E. A. Long and J. D. Kemp, TH1s JourNaL, 58, 1829 (1936).

(6) K. Stokland, Kgl. Norske. Videnskab. Selskabs, Forh., 10, No. 39,
145 (1937); also c¢f. C. A., 32, 6121 (1938).
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Equations are derived for the light intensity distribution and the positions of intensity zeros in a Gouy diffusion fringe

pattern.

utilizing two different methods for integrating the wave optical amplitude equation.

This treatment goes beyond previous theory for the Gouy method by using a general mathematical approach and

One procedure results in a series ex-

pansion which converges rapidly for the lower fringes while the other development yields an expression converging rapidly

for the central fringes.

By specializing the fringe minima relation to the case of ideal diffusion, additional terms are obtained

(equation (62)) for the nimerical factor, (j + 3/4), in the interference condition of the original theory. Conditions which a
cell mask must satisfv to minimize its distitrbance of the Gouy fringes have been determined.

An experimental uiethod for studying free diffu-
sion in liquids, based on the Gouy interference
phenomnenon,®* has recently been developed and
shown to be useful either for precision determina-
tions® 7 or for rapid measurements.®® While the
original theory for this inethod!® represented a good
approximation to experimental conditious, its use
of simple quadratic and cubic expressions to
approximate the wave optical phase difference
function did not allow accurate calculation of the
relative fringe intensity distribution nor did it
provide an estimate of the resulting error in the

(1) du Pont Fellow, Yale University, 1949-1950.

(2) Department of Chemistry, University of Wisconsin, Madiso1,
Wis,

(3) G. L. Gouy, Compt. rend., 90, 307 (1880).

(4) L. G. Longsworth, Anun. N. Y. Acad. Sci., 46, 211 (1945).

(3) L. J. Gosting, E. M. Hanson. G. Kegeles and M. S. Morris,
Rev. Sci. Instruments, 20, 209 (1949).

(6) I.J. Gosting and M. S. Morris, THIS JOURNAL, 71, 1998 (1949).
(7) L. J. Gosting, ibid., T2, 4418 (1950).

{8) C. A. Coulson, J. T. Cox, A. G. Ogston and J. St. L. Philpot,

Pyoc. Roy. Soc. (London), A192, 382 (1948).
(9) A. G. Ogston, tb1d., A196, 272 (1949).
{10) G. Kegeles and L. ]J. Gosting, THIs JoUurNar, 69, 2516 (1947).

iringe position equations. Both of these limitatios
are rentoved in the following development which
by utilizing a general series expansion for the phase
difference function yields series expansions for
both the fringe system intensity and the fringe
position equations. The relation of the previous
theory to these expansions is indicated, and a
comparison between them reveals that under
certain conditions the latter must be used in order
to obtain accurate diffusion coefficients. In addi-
tion, the following development is not restricted
to Gaussian diffusion boundaries and may be ap-
plied to any non-Gaussian symmetrical boundaries
or skew boundaries for which the phase difference
function is known.

The Phase Function and Amplitude Equation

In the Gouy phenomenon monochromatic light
of wave length X from a horizontal source slit S,
Fig. 1, is collimated by lens U, and focused by lens
U, to form g slit image in plane P. The diffusion
cell, C, when filled with homogeneous liquid of
refractive index sy, Fig. la, has no effect on the
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Fig. 1.—The Gouy diffusion apparatus showing (a) the
straight wave front, F,, obtained when homogeneous liquid
fills the diffusion cell, C, and (b) the distorted wave front,
Ty, resulting from a diffusing boundary in C.

shape of the wave front, F;, between the two
lenses. With a freely diffusing boundary present
between two regions of refractive index #; and #,,
where n2 > n,, the wave front F,, Fig. 1b, is seen to
suffer a non-uniform retardation. If the cell
thickness, a, and the refractive index gradient are
both reasonably small the magnitude of the retarda-
tion at a given level, x, is an where 7, the refractive
index of the solution, depends on both time and x.
This deformation of the wave front produces inter-
ference fringes in plane P below the undeviated
slit image, and their position likewise is a function
of time. :

At a given time, ¢, after formation of the initially
sharp diffusion boundary, the light intensity,
I(Y), at a level Y below the slit image is given by!!

I(Y) = yy* (1)
where the amplitude, ¢, is obtained from
¢ = K [ei®() g(x) dx (2)

and its complex conjugate, y*, is obtained by re-
placing ¢ in this relation by —z. Since e~7*® =
cos ®(x) — 7 sin ®(x), it will be noted that apart
from differences in notation this relation for y¢*
is equivalent to equation (17) of the previous
theory! except for the addition of a cell masking
function, g(x). Only for the special case of a sym-
metrical boundary, with symmetrical masking, is
¢* equal to Y. The proportionality constant, K,
in equation (2) will not be further determined, and
the integrals are taken over the entire wave front.
The origin of x is taken at the level where dn/dxisa
maximum, and similarly the phase difference func-
tion, ®(x), is defined relative to a path through the
maximum gradient of #, where # = #n,. This
convention allows the equations to apply con-
veniently to skew, as well as symmetrical, bound-

(11) J. C. Slater and N. H. Frank, “Introduction to Theoretical
Physics,” MeGraw-Hill Book Co., New York, N. Y., 1933, p. 311;

G. Joos, “Theoretical Physics,”” Hafner Publishing Co., New York,
N. Y., 1934, p. 363 f.
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aries. Adding phase differences due to the solu-
tion and air paths, we obtain

®(x) = (27/N)[a(n — nm) — x sin (arctan Y/b)] (3)

or
P(x) = @Cm/N)[a(n — nm) — x¥/b] (4)

with reasonable precision when Y/b < 0.01, where
the optical distance, b, is measured from the focal
plane, P, to the nearer principal plane of lens U,.
A small value of ¥/ also ensures that ray bending
in the cell will be small, so if a is also small z will
be essentially constant over each light path through
the cell as required by this form of the wave front
retardation term.

The Path of Integration.—While ®(x) is a real
function in equation (4), its expansion into the
complex plane, as illustrated by the Taylor ex-
pansion

B(x + 1y) = B(x) + iy@'(x) — (*/2)y*®'(x) —
(Ya)iy* @t i(x) + ... (5)

is necessary for convenient integration of equation
(2). The path of integration which will be followed
in the x,y-plane between cell mask positions J; and
J21s shown in Fig. 2. Associating subscripts 1 and
2 with negative and positive values of x, respec-
tively, there will be two saddle points,'? S; and S,,
at values of x determined by ®X(x) = 0, for every
value of Vin therange 0 < ¥V < C; = ab(dn/dx) max.
Since normals to the wave front at these levels will
be focused at YV by lens L,, it follows that light
traversing the cell at the level of a saddle point
will contribute most to the amplitude at V. In-
tegration of equation (2) along paths B; and B,
over these saddle points provides the contributions,
¥s, and ¥, of the diffusion boundary to the ampli-
tude at Y. For these integrations the masking
function, g(x), of equation (2) is set equal to unity
since the positions of closest masking, L; and Lo,
are assumed to be beyond the boundary in the
region where dn/dx is essentially equal to zero.
Since the integrand becomes nearly zero in the
valleys, which are shown as shaded regions, into
which paths B, and B, descend, the exact path of
the dotted line connecting them is unimportant.

Fig. 2.—The path of integration between cell mask positions
Ji and Js in the complex plane (x,y).

When horizontal straight-edged masks are placed
at levels L; and L, their contributions, ¢g, and
¥E,, to the amplitude are obtained by integrating
along paths E, and E, from the mask positions into
the valleys where, as before, the integrand is nearly

(12) H. Jefireys and B, S. Jefireys, ‘“Methods of Mathematical

Physics,” Cambridge University Press, Cambridge, 1950, p. 503.
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zero and connections to By and B; may be made
along any convenient path. Along paths E; and
E; g(x) is set equal to unity, but along the x axis
beyond L; and L, g(x) must equal zero since in this
case all light is cut off by the mask and the total
amnplitude at level Y becomes Y, + ¥, + ¥, +
VE,

Other masking cases may be considered by letting
g(x) equal zero only when x < Jy and x > J; and
designing the mask so g(x) decreases from unity to
zero between L, and J; and between L, and J;.
Then the contributions ¢¥m, and ¥m, for paths M,
and M, do not equal zero and must be included.
Requirements wluch g(x) must satisfy in this
region if disturbances of the Gouy fringes by the
cell mask are to be minimized will be discussed
below in a section on masking.

The Phase Function for Ideal Diffusion.—To
obtain a complete solution of equation (2) # must
be expressed as a function of x in equation (4).
Following the notation of the original theory!?
for a single solute which diffuses ideally, producing
a Gaussian boundary, and assuming that the index
of refraction of the solution varies linearly with the
weight of solute per unit volumie of solution

7= fn + [(n2 — 7L1)/\/7r]j;zc"32 ds (68)

where -
s = x/(2V/Di) (7)

Here D represents the diffusion coefficient and ¢
is time since formation of the initially sharp
boundary between the two solutions. Defining
the experimentally deterinined total nuinber, jm, of
fringes by

Jm o= a(nzs — m)/\ (8)
and

Co o= ab(An/dx)nes = jm N/(2V 7D1) (9)

the phase difference function, equation (4), for this
case beconies

2z
B(x) = ¢(z) = 2\/rj,,,l:£ e B d3 - ;I',w‘(.\:l (10)
JO

An examination of the maxima of equations (4)
and (10) indicates that, for any boundary, at a
given time C. ¢s the greatest downward displacement of
light in the focal plane, P, predicted by geometrical
optics.

Although the above derivation has been for the
case of collimated light through the diffusion cell,
the phase difference function represented by equa-
tion (10) also applies to the case where lens U,
is omitted and a single long focus lens at the position
of Uy is used to focus the source slit.’ In the single
lens apparatus, however, the boundary should be
located o1 the optic axis and b is measured from the
focal plane to the ceuter of the diffusion cell.

The problem is to solve equations (2) and (10)
for C: in terms of the downward displacement, Y,
of any fringe numbered j, since when C; is known
the diffusion coefficient, D, may be evaluated from
equation (9). Herej = 0, 1, 2, ... with the lowest
fringe assigned the number zero. The interference
condition derived for intensity zeros in the original
theory!® was
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G+ ¥ i = £(a) = (2/%)[f“e—ﬂ’ a3 — zie=' |
0
(11)
where z; denotes the value of z for fringe numbered
j.  After detertnining f(z;) from j and jm, the corre-

sponding value of e~#*was obtained from a table of
e~ %" versus £(z;) and C; calculated from the relation

Yi/Cy = e—3it (12)

which is derived by setting the first derivative of
equation (10) equal to zero. One result of tle
present work is the derivation of correction terms
for (7 + 3/4) in equation (11).

Integration of the Amplitude Equation for the
Diffusion Boundary

The following integration procedures allow the
computation of the amplitude and the interference
conditions whenever the phase function, &(x),
is known. In some experimental cases equation
(10), or even equation (4), may not be sufficiently
accurate; for example, the assumption that #n is
linear with the solute concentration may be poor or
a n1ay be so large that » changes appreciably over a
given path through the cell. Correct results may
then be obtained by applying the following integra-
tion procedures to the corrected phase function.

Expansion in Airy Integrals.—Before solving
equation (2) by integrating over the saddle points
indicated in Fig. 2, an alternative method of solu-
tion will be presented. A general approach would
be possible by expanding the phase function,
®(x), as a Taylor series about the origin and then
writing equation (2) as a series in the Airy integral
and its derivatives. This procedure is useful for
ouly the lower fringes, however, and only the special
case of ideal diffusion will be treated by this method.

Expanding equation (10) as a power series in g,
and substituting
(13)
(14)

e = (23/Fjm)¥
a = ¢l(V/G) — 1]
and

U = ge'/a

(15)
the coutribution of the diffusing boundary to the
amplitude, equation (2) may be written
ve = 1 8 u? u?

24/ (Dt/¢) Kfe --i(au +3u3)a —i( - i%€+m'-' sigat ‘)du
(16)

Expanding the second exponential as a series,
deforming the path of integration up to the x-
axis, and defining the Airy integral by

@ —dlan 1u.a
Ai(a) = [1/(21r)}f AR (17)
so its derivatives become
= — il au —l—u'
Aim(a) = [(—17’")/(27r)lf e~ et Dau (181

equation (16) reduces to the asymptotic expression
Ail'(e) 1A (e)

10¢ €2 42
éixll(?—)

420

1 Ai”»‘((x)
ey 218

AIX( n")‘l _

i Ai¥V(a)] o
30

6000
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Successive applications of the recursion formula
Ain (@) = (m — 2)AI"Ya) + aAi™%a) (20)
which may be derived from the differential equation
g = xq (21)
satisfied by the Airy integral, provides the final

expression for the amplitude. Substitution in
equation (1) yields the intensity relation

I(y) = (lﬁrszDt/e)g Al(a)l:l — "e -+ %2(2;"2

7
o 93470° | Sla
5&)) (670 T 90 T 11666) o :I +
T —
A (a)l: 105

17 8ad
+ (05 165) -
1223 1163&4 at
’S(Z% + 18900 6000) + :H (22)
for the lower fringes of a Gaussian boundary when
diffraction from the cell mask is neglected.

The interference condition for intensity zeros is
obtained by replacing Ai(a) and Ai'{a) by their

Taylor expansions about «; where «; is defined by
Ai(a;) = 0, and the new variable is denoted by

(23)
Setting the intensity equal to zero, eliminating
derivatives of Ai(w) higher than the first by equa-
tion (20), and solving for £ by successive approxi-
mations

ak _ 17(10 + %)
10e 1050€?

-+

§=a—qa

30560, + 1019a%;

£= 189000¢°

-+

(24)

Combining this result with equations (14) and
(23) we have the interference condition provided
by this Airy integral expansion

Y _ o 17(10 + a¥)
C + o+ 10¢? 10502 +
1019((30560/1019)a; + o] (25)
189000+

where V; denotes values of Y for the jth intensity
zeros. Using an approximate coefficient for o;
in the fifth term and replacing € by jm according to
equation (13)

Y _
[

0.001288

=1 4 0.430127 —7 + 0.018501 —~—7.

(4 )’/ s (s )“/
(10 + a3) (3Oa,+a1)
Gl -+ 0.000185 Gyl
Solutions of this equation are readily obtained using
the roots, aj, of the Airy integral. The first 50
roots have been tabulated to eight decimal places
and published by the British Association.!’* Ap-
proximate values for the first five roots are given in
Table I so the relative magnitude of the terms in
equation (26) may be readily observed. Values of

(26)

TABLE I
ROOTS OF THE AIRY INTEGRAL
J 0 1 2 3 4
o —2.338 —4.088 —5.521 —6.787 —7.944

D are then computed from equation (9) by inserting
C: from equation (26), subject to the possible neces-
(13) **The Airy Integral,” British Association for the Advancement

of Science Mathematical Tables, Part-Volume B, University Press,
Cambridge, 1946,
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sity of extrapolating to 1/¢ = 0if the initial bound-
ary was not sufficiently sharp.!4

Integration by Method of Steepest Descents.—
Since the minimum and maximum of equation (4)
become saddle points (Fig. 2) for the integrand,
¢*®)  when ®(x) is expanded into the complex
plane, asymptotic solutions of equation (2) may be
derived by the method of steepest descents!? when
Y lies in the range O < ¥V < Ci = ab(dn/dx)max.
First, a general solution for the amplitude will be
obtained which is valid for any phase difference
function for diffusion, ®(x); then the results will
be specialized to the case of a Gaussian boundary.

Using subscripts 1 and 2 to identify the following
quantities with the minima or maxima, respectively,
of ®(x), denoting the modulus about these points
by ¢, and setting g(x) = 1, the contribution of the
diffusion boundary to equation (2) becomes

VB = yp, + ¢B, =

K 3 —21:2 f_‘” exp [ib(xx+ei0ky) ] (ekdf)  (27)

where 8 is the polar codrdinate, to be assigned a
convenient value later, measured counter-clockwise
from the positive direction of x. Expanding &()
as a Taylor series about %%, and remembering that
®l(x;) = ®Yx;) = 0, either integral of equation
(27) may be written

¥Bi = Kei[d><xk>+ek1f exp i{[f1>“(xk)e2f'0ks“2/2] +

> i@"‘(xk)em"ﬂkr'"/m!]}dr (28)

m=3
While this integral could be evaluated by expanding
exp 7 », as a power series in {, it is more con-
m=3
venient to obtain an automatic grouping of terms

according to inverse powers of jm by the following
method. Defining 2 by

BT (xy)e2i842 /2 = {[‘?”(xk)eﬂ"ki'z/?] +

> [@m(xwemmw/m!]} (29)
m=3

we may write

¢ =v/Vpi (30)

where

br = {1 + [2e—2i0/31(xx)] [@m(xk)emm;m~2/m1]}
m=3

(31
Lagrange’s method for inverting a series!® then
gives
_ had g dr—1 _ (32)
£= 2 dar [p" 12]; 0

and

had o1 dr—1 —
¢ = Z o= aE I:p,, /{I;=0dﬂ (33)

r=1
(14) L. G. Longsworth, THIS JOURNAL, 69, 2510 (1947).
(15) Whittaker and Watson, A Course of Modern Analysis,*
Cambridge University Press, Cambridge, 1927, p. 133,
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so equation (28) becomes

VB, = Kei[fb(xk)+0k]f {exp 7 [®11(xx)e2ifrv?/2]} X

d o1 grt
e ———— -r/
r§1(" - 1)tdg? I:pk {I{=0dv
Since ®1(xy) > 0 and $'(x;) < 0 it is seen that by
assigning the values
6 = + 7/4, 6, = —x/4 (33)

all terms in the series mayv be integrated by the
relationship

®
orlemedt dp =
—

0if r = 2,4,6,---

1 (r = Dive
Z (= 1)/2] (4e)7 />

Substituting

(34)

ifr =135 - (36)

r—1=2s s =2012+-- (37)
equationt (34) becomes
. 27 s
yB, = Ket[i’(xk)+0k][(:—:1—ycm];—) X
. 1 ,d~2: Hpls+1 ’2)]
2 S F R e ["" G G

After solving for the derivatives of p~(+1% the
expression
va/K = eil®(m) +o/A( TV, + i) +

e [®(zy) —x/4)( Vo 4 1Wy) (39)

is obtained for the amplitude where!

- _l: ]‘/“51_33:5_ 1 I:(_‘?ff)*
k (_l)k Tplt / 1152 (@112 \ o

18 (MY 3 (4{1) 24 MY
55 (@112

24 @VI )
é@z‘S'&ﬁ:IJ'“"’{

1/ ,\ 5 1 q)IIl 2
l:( l)k 1@1] + 24 ;i,ul:(;;ﬁf)
85085 1 !bI“ 40(@””“#“
82044 (Tﬁl'f'j&[(l‘{lf) Tr {elp
2, (@III)2(¢IV)2 . 72 (@III)S@\ 27 q)l\’ 3
17 (@i T8y (el T 221 (Eﬁﬁ>
048 PIIplY !b‘ 216 (!b“l)ﬂtb” + (‘1(944:‘ ( )2 +

(07T

1T (@t 711
(40)

31V
T 33f1:| -

1105~ (®11)8 1105 (@53
648 IVelI N 2592 oIIIpVII
12155 (#1127~ 85085 (ll)?
D144 V11T }
Defining
= &(x1) + 6 (42)

the intensity, equatlon (1), for any diffusion boun-

dary becomes

Yy =K{Vi+ Wi+ Vi+ Wi+ 2(NT +
Wila) cos (y2 — ) — 2{VilHS — W T, sin (e —
i (43)
Imposing the restrictions that
Pr(xy) = —n(xa)  om o= 0,24, (44)
and
(b"'(rl) = J(xy) m o= 1,3, 5, (43)

(Iﬁ) To simplify the notation in equations (40) and 41) & jx
used to lenote ™ xy)
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it is seen from equations (40) and (41) that 1y =
Vyand Wy = —1W,, so the intensity equation for
any sviminetrical diffusion boundary reduces to
I(Y) = 4K*[Vscos v2 — Wasin y2]2  (46)
Finally, consider a Gaussian boundary in which
the refractive index is given by equation (6).
Since -

2 = :/(24/Dt) (479
simplification of equation (46) may now be ob-
taiied by substituting ¢”(2:;) for ®”(x,) according
to the relation

&"(x2) = (2V/ DIy ™em(z) (48)

The factor (24/Dt) cancels out of all but the square
root terms in |, and W, The derivatives, ¢™(z;),
where m = 2, 3, 4, - - -, are obtained by differentia-
tion of equation (10), while 7v; is determined by
substituting the relation
Y/C = (49)
for maxima in ecuation (10) back into that equa-
tion giving
vy = winf(z) — 7/4 (50)
The function {(z) is defined as before by equation
(11).
Defining z as positive so the subscripts, 2, may be
dropped for convenience, the final expression for
the fringe intensity for an ideal diffusion becomes

J(V) = 1KV cosminf(z) — n/4] —
W sin [mimf(z) — =/4112 (51)
where
I = 24/Di h~1/z[1 _436%8(”7") 2u(z) + - :I (52)
P o= "\/Dth"/zl:— D (ha?) lon(z) +
85085 5\ _ ] -
663552 (=) TPos(z) (53)
in which
= (2//7)3¢ (54)
2 8
oi(z) = 1 — -:Z2 +'.'Z4 (55)
el 12 032, 64 o
ofe) = 1 =52 = ggmat t gzt (36)
948 4744
) = — _,-2 T ed e - —_—
ai(a) =1 * 1995 % T 125425 °
8544 o 20352 TIIES .
25125° T 325425° T 425135

The interference condition for zeros of intensity
is obtained by setting /(YY) = 0 in equation (51)

giving
tan wljmf(z) — 1] = V/W (58)
and expanding as an arctan series
linf(z) = 4] = (G + Vor — (W/V) +
C/(W/VE = (39)
where ;7 = 0,1,2, - - - . Defining
R(z) = (B3vV/7/H)f(z)z7%2* = (37/2)[inf(2)]/(xhz?) (60)

which approaches unity as z approaches zero, /1
may be written

W_ 5 R(za(z) | 85085 I: (2) —
P T T2e Tiai(e)] T 32304880 70
115 R(z
vtz )] R = e oD
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Substituting in equation (59) gives the final inter-
ference condition for the case of a single, ideally
diffusing, solute

Gu(z))

[Fmf(z4)]
000036471 g2 +
The subscript j has been added to denote the
intensity zero numbered j, and

Gi(z;) = R(zj)o1(z;)

\ 1155
(RGP Jouwi) = 17017

Tm £(z; ) = +Z’ -+ 0.0070362

(62)

(63)
17017 ai(zi)ozs) +

Ga(z;) = 13912

o )| (64)

These quantities are given in Table II as a function
of £(z)).
TaBLE II

VarLues oF THE Funcrions Gi(z;) aND Go(z;) FOR USE IN
Eguation (62)

f(z;) Gi(z;) Ga(z;)

0.00 1.000 1.000
.05 1.0562 0.993
.10 1.150 .980
.15 1.292 .959
.20 1.484 .925
.25 1.737 .866
.30 2.065 754
.35 2.487 .526
.40 3.032 .044
.45 3.739 —0.998
.50 4.664 —3.294
.55 5.892 —8.478
.60 7.557 —20.578
.65 9.874 -50.21
.70 13.221 -127.96
.75 18.305 -~333.57
.80 26.618 -1114.9
.85 41.844 —4385.3
.875 54.96 —-9954
.90 75.85 —26107
.925 113.11 — 86087
.95 194.20 — 430680
.975 468 .44 —5915500

Equation (62) is readily solved for f(z;) with the
aid of Table IT after one or two successive approxi-
mations. The quantity e~%" is obtained from f(z;)
by means of tables of these functions, and (i,
computed from equation (12) as before,!® may then
be substituted in equation (9) to evaluate the
diffusion coefficient, D.

Integration of the Amplitude Equation for the Cell
Mask

It remains to determine g(x) so that disturbance
of the Gouy fringes by diffraction from the masks
at the ends of the cell will be minimized. Since a
general treatment with unsymmetrical masking
would lead to essentially the same form for g(x),
the notation will be simplified by considering
identical masks placed symmetrically about a
symmetrical diffusion boundary so g(—x) = g(x),
Jo = J,and —L; = L, = L. Simple
solutions of the amplitude equation are then ob-
tained if it is assumed that the masks are placed

—-J1 =
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beyond the boundary, where # is essentially con-
stant with x, and if only values of ¥ removed from
Y = Qare considered.

The contribution, yg = ¥g, + Vg, to the ampli-
tude at ¥ from paths E; and E,, Fig. 2, is obtained
by integrating equation (2) in the form

Yu= Kfme—i[vrjm—w(L—am‘!)](gm‘dg') +
0
0 .
Kf eilmim—w @+ %0 ) gitady)  (65)

where { denotes the modulus about —L or L and
w = 27 Y/(\b). Since & and @, lie between 0 and
— 7 this expression reduces to

vE = —2K|[sin (rjm — wl)]/w (66)

Between |x| = L and |x| = J where g(x) decreases
from unity to zero the amplitude contribution,

M = ¥Mm, + ¥M, 1S
-L
Yn = Kf ; g(x)ei(—mim—wDdy +

J
Kf g(x)ei(mim —0Ddx  (67)
L
or

J
Y = 2Kj; g(x) cos (mfm — wx)dx (68)

Integrating by parts and letting 6 = (7jm — wx)

in & I 5 IT in &
Yu = 2K% _ g(x)wsln + 8 (xizcos L8 (ZZ sin 8
x=J
111 v .
g (11)4005 5 g (92551n 5 4o e

x=1L

providing the derivatives are continuous.

Neglecting the periodic function in the numerator
it is seen from equation (66) that in the region
|w| > 1 diffraction from a horizontal, straight-edge
mask for which g(x) has the form shown in Fig. 3a,
isrelated to ¥ by the proportionality

Yrx1/V (70)

-X -X -X
-J -J -J
-L L L

gl) - alx) - g(x)

L L L
J J J

X X X

3a 3b 3¢

Fig. 3.—Three illustrative masking functions, g(x), repre-
senting (a) horizontal straight-edge masks at —L and L, (b)
an Improved masking function, and (c) the approximate
form of the best masking function.

When g(x) is linear instead of zero in the region
L < x < J, as illustrated in Fig, 3b, the first term
in Y cancels Yy and

Ye + ¥u = /1?2 (71)
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This corresponds to the use of straight-edged cell
tnasks placed at an angle to the horizontal.!*
Further inspection of equation (69) indicates that
diffraction from the mask may be minimized in the
region below w = 1 by selecting a mask such that
the first m derivatives of g(x) where m is made as
large as possible, are continuous between L and J
and equal to zero at L and J. Figure 3c shows the
approximate form of this ideal masking function.
Either a variable density absorption mask or a
curved, opaque, mask may be used to produce the
desired form of g(x).

Discussion

It is of interest to compare the expressions for
fringe intensity aud position derived using the
Airy integral with those obtained by integrating
across the saddle points. Following this com-
parison, which provides a test of the present de-
velopment, the relations between these equations
and those of the previous theory®®!® for the Gouy
method will be shown. The necessity of using this
extended theory in order to obtain accurate values
of D when ju is small will then be illustrated by
comparing values of ¢~** obtained from this theory
with those obtained from the previous theory.

Comparison of the Airy Integral and Saddle Point
Expansions.—A numerical comparison of these two
integration procedures is presented i Table III,

TaBLE 111
CoMPARISON OF COMPUTED RELATIVE INTENSITIES FOR THE
LowgRr FRINCES OF AN IDEAL DIFFUSION
Jm = 100

101(Y)/(186DtK?) 10I(Y)/(16DtK*)
Alryd

e =Y /(y Saddle pointt
1.00000 0.2483
0.99640 .3183
.99193 L4110 15.06
.99005 .4491 2,458
L98571 5253 0.5632
.98324 L5558 L5209
. 98059 L6732 .5291
97775 . 5698 .5339
.97473 . 5382 .5134
.97151 4722 .4630
.96812 , 3724 3640
.96454 .2479 L2441
. 96079 L1218 .1203
.95685 L0275 .0273
.95275 .0016 .0016
.94847 .0629 .0629
.94403 L1918 L1918
.93941 .3215 .3214
.93463 .3624 . 3624
.92969 L2676 .2676
.92459 L0965 .0967
.91934 .0003 .0003
.91393 .0847 0847
.90837 L2595 .2594
.90267 ,2935 .2935
.80682 L1210 L1210
.89083 L0002 0002
.88470 L1385 L1383

¢ Equation (22). ¢ Equation (51).
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which lists some computed intensities in the lower
fringes formed by a Gaussian diffusion boundary.
It is seen that the saddle point method, equation
(51), begins to diverge as expected when ¥ — C;
(i.e., e — 1), but its agreement with the Airy
integral expansion, equation (22), for this case
where jim = 100 is excellent for the next two fringes.
If jm is decreased the error in both calculation pro-
cedures increases, though the Airy integral method
will continue to give the best results for values of
V near (. Further up the fringe system the
situation should be reversed, with the saddle point
method giving a better result than the Airy integral
expansion. The intensity distribution in the “tail”
of the lowest fringe, where Y/C: > 1, may be con1-
puted from equation (22) while the saddle point
ntethod completely breaks down in this region.

The close relation between interference condi-
tions (25) and (62), derived from the Airy and the
saddle point expansions, respectively, will now be
shown. Expanding {(z), equation (11), as a power
series in 2z and using Lagrange’s method® to invert
the series gives
3L . 483

1
BE [1 Tt TR tam® T :I {72)

where w is defined by
w = [(8v/m/4)(2)]"/s (73)

From equations (49) and (72) the relative down-
ward displacement as a function of w becomes
1 17
VO, = g7 = — qu2 — — gt
Y/C, = ¢ 1 —w +mw4+1050w +

1019
189000

which is similar in form to the Airy interference
relation (25). To show the exact relation between
the saddle point and Airy interference conditions,
a series giving w? for intensity zeros must be ob-
tained from equation (62), which in terms of (j
+ 3/4) becomes

Jm 72x2) (7 + 3/4)

5 N argy 221 N1 o
() [ ot + %5 o) e+
By substituting

pi = (87/2)XJ + 3/4) (76)
into this expression equation (73) may be written

ws .o (74)

f(2) =

(75)

AN < Ch
w;? = (1 TR o2
5 [35Gi(z:) + 221(‘,2(2,»)] 1,1
36 956 PYC tooep 70

for fringe minima where e is defined by equation

(13). From equations (63), (64) and (72) the
series expansions

Gi(z;) =1+ %;%w," +%(i)%gwie + - (78)
and

Culs) = 1 — 20 gt — 2192 (79)

TR T1esTs Yt T

are obtained which allow the following solution for
w_,*-’.
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TABLE IV
A COMPARISON OF REPRESENTATIVE VALUES OF ¢ %i? OBTAINED USING DIFFERENT EQUATIONS TO EVALUATE f(z;)

—

LI

—~——i(zj) = (F+3/4)/in® f(z;) = Z;/in® —~ f(s;)from eq. (62)°———
jm- 100 Jm = 10 Im =6 Jm = 100 Jm = 10 Jm = 6 Jm = 100 Jm = 10 Jm = 8
0 0.95393 0.78978 0.70739 0.95355 0.78821 0.70522 0.95355 0.78808 0.70476
1 .91919 .63706 .49954 .91907 .63653 .49885 .91907 .63634 .49812
2 .89106 .51751 .34112 .89098 .51724 .34075 .89098 . 51699 .33969
3 . 86643 .41603 21119 . 86638 .41585 .21097 . 86638 .41555 -20925
4 .84402 .32703 . 84399 .32690 . 84399 .32651
50 .30028 .30028 .30027
96 .01245 .01245 .01234
97 .00832 .00832 .00814

¢ “Quarter wave’’ approximation, equation (23) of ref. 10.
equation (11) of ref. 6.

A 5 5 17
2. — Pi T . A T L
whio= l_l tis0, " 5600 T :I T 105 T
131p;%/3 l: 5 :I i
6756 L T 18,2 + (80)

Substitution of this expression for w;? into equation
(74) gives the saddle point expansion for Y;/C:
for fringe minima of an ideal diffusion, which is
identical with equation (25) from the Airy integral
expansion providing «; is defined by

5 5
— _ 2 ...
o[ 1+ gt ] (81)

Since this is, in fact, the asymptotic expression for
the roots of the Airy integral,!® equations (25) and
(62) are seen to be in agreement,

Comparison with Previous Theory.—Two identi-
cal Airy integral relations for intensities in the
lower fringes of Gouy patterns were derived previ-
ously by dropping higher terms in the phase differ-
ence function leaving a cubic expression with the
proper slope at the origin.!? The present Airy
integral development retains more terms in the
expansion of the phase difference function about the
origin thereby providing a refinement over the
previous relations, which correspond to only the
first term, Ai(a), of equation (22). The fringe
position equation of Coulson, et a/.,!® for the lowest
intensity zero is seen to be identical with the first
two terms of equation (25).

To obtain reasonable accuracy further up the
fringe system quadratic or cubic expressions were
used previously to fit the phase difference function
at its origin and maximum,%1 rather than at its
origin with the correct slope. The fringe intensi-
ties?® obtained by these approximations cannot be
readily compared with equations (22) and (51),
but the “quarter wave’ approximation for intensity
zeros?® which resulted from curve fitting with a
quadratic is contained in the first two terms of
equation (62). Furthermore, by setting Gi(z))
and Gq(z;) equal to unity instead of giving them the
values in Table II, equation (62) reduces to an
asymptotic series for the Airy integral refinement
of the “quarter wave’’ approximation for intensity
zeros.”! This correlation occurs because f(z)
must approach zero when Gi(z;) and Ge(z;) ap-
proach unity, and as f(z;) approaches zero the

(17) Equation (7) of ref. 8 and equation (27) of ref. 10.
(18) Equation (9) of ref, 8.

(19) Equations (22) and (28) of ref. 10.

(20) Equation (23) of ref_ 10.

(21) Equation (11) of ref. 8.

@xj

b Airy integral refinement of “‘quarter wave’’ approximation,

¢ Saddle point interference condition, equation (62) of this development.

cubic approximation provides an excellent repre-
sentation of the actual phase difference function.
Thus the present development confirms the validity
of the Airy integral refinement of the ‘“‘quarter
wave” approximation for the lower Gouy fringes
when jm is large. Both the ‘“‘quarter wave’ ap-
proximation and its Airy integral refinement are
seen to be precise interference conditions for the
central fringes when jn, is large, since the correction
terms in equation (62) become so small compared
to j 4+ 3/4 that they can be neglected. Close to
the undeviated slit image the accuracy of both
these approximate interference conditions de-
creases, since Gi(2j) and G(z;) become so large that
the correction terms in equation (62) should be
retained.

When jwm is small, Gi(2;) and Ga(z;) are appreci-
ably different from unity for even the lowest fringe
and the correction terms in equation (62) must be
considered in determining f(z;) for every fringe.
The numerical magnitudes of the errors which
would otherwise be introduced are illustrated in
Table IV which presents representative values of
the normalized fringe displacements, e—%", computed
from the “‘quarter wave’’ approximation, the Airy
integral refinement of the ‘“‘quarter wave” approxi-
mation, and the saddle point interference condi-
tion (62). These values for a 6 fringe system
clearly illustrate the need for using the present
theory to obtain accurate values of D from experi-
ments in which jm is small. No value is given for
the 4th fringe because the convergence of equation
(62) becomes poor this far up a 6 fringe system.
When j is increased to 10, values of e~ from the
Airy integral refinement of the “quarter wave”
approximation are seen to agree with those from
equation (62) within 0.05%, for fringes 0, 1 and 2.
Either of these two interference conditions could
therefore be used to calculate D to within 0.1%
for these fringes, but equation (62) must be used
to obtain this accuracy from the higher fringes.

Table IV also illustrates that for a 100 fringe
system the Airy integral refinement of the ‘‘quarter
wave” approximation provides values of e—*" for
the lower fringes which are in agreement with values
from equation (62), but which differ slightly from
those of the ‘“quarter wave” approximation. The
three interference relations are in excellent agree-
ment for the central fringes, illustrated by the
50th fringe, but the two approximate interference
conditions become slightly in error as the 96th
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and 97th fringes are approached. It is of interest
to note, however, that the positions of fringes 96
and 97 are predicted by the simple “quarter wave’
approximation within the limits of the wusual
experimental error.

In addition to these numerical comparisons with

Harry C. ALLEN, JR.
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previous theory it should be mentioned that for the
lowest fringe, 7 = 0, the Airy integral interference
condition, equation (26), yields the values 0.95354,
0.78805 and 0.70474 for e-%' = Y;/C: when jm
is 100, 10 and 6, respectively.
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The Pure Quadrupole Spectra of Solid Chloroacetic Acids and Substituted Chloroacetic
Acids!

By Harry C. ALLEN, Jr.2
RECEIVED JUXNE 23, 1952

Using a frequency-modulated super-regenerative spectrometer the pure quadrupole spectrum of Cl% has been measured

in the chloroacetic acids and several of their derivatives.

in the case of small separations (<0.5 mc.) are attributed to crystallographically non-equivalent chlorines.
the chemically different chlorines have absorption lines separated by nearly 7 mc.
nic. in CCL,CH(OH ), is interpreted as due to intermolecular hydrogen bonding.

In several of these compounds multiple lines are observed, which

In CCLCOCI
A separation of slightly greater than 1
From the variation of the chlorine frequency

in the CCl; and CH;Cl groups it is inferred that the electron withdrawal ability of the substituent groups measured increases
in the order COO~, CONH,, COCH,;, COCH,CI, COOC,H;, COOH.

Introduction

A nuclear electric quadrupole momnent arises
when the nuclear charge deviates from a spherical
distribution. This permanent quadrupole moment
can interact with a non-spherical extranuclear
charge distribution to produce a variation in the
electrostatic energy of the system with nuclear ori-
entation. This type of effect has been observed as
hyperfine structure in the rotational spectra of gas
molecules and more recently the direct transitions
among these energy levels have been observed in
crystalline solids in the radio-frequency region of
the spectrum.

In this work the pure quadrupole spectrum of
chlorine®® has been measured in the chloroacetic
acids and several of their derivatives. These spec-
tra are very sensitive to small changes in the gradi-
ent of the electric field at the chlorine nucleus and
hence yield information concerning molecular bond-
ing and solid state effects. 1t has been found that
such resonance lines are influenced by different
crystallographic environment?® and intermolecular
bonding in the solid state,* and that marked differ-
ences in the chemical bonding of a given atom give
rise to rather widely separated resonance lines. It
is thus possible to obtain considerable information
concerning molecular bonding in the solid from a
study of these spectra.

Experimental

The spectra were observed using a frequency-modulated
super-regenerative spectrometer similar to that of Dean
and Pound.’ The frequency modulation was a 30 cycles/
sec. sine wave; this same frequency was applied to the hori-
zontal plates of the display oscilloscope. A square-wave
quénch voltage was used, the frequencies giving the greatest
sensitivity being in the region of 50-100 kc. Samples were
sealed in 2-dram vials which were inserted directly in the coil
which formed part of the resonant circuit of the oscillator.

(1) The research reported in this paper was supported in part by the
Office of Naval Research under ONR Contract Ndori-76, Task Order V.,

(2) Atomic Energy Commission Postdouctoral Fellow.

i13) H. G. Dehmelt, Z. Physik, 180, 356 (1951).

(4) C. H. Tuwnes and B. P. Dailey, J. Chem. Phys., 20, 35 (1952) _

(7). Dean and R. V. Pound, #bid., 20, 195 (1952).

When mniaking low temperature runs the sample and coil
were inumnersed directly in the cooling bath.

The frequencies were measured with a war surplus fre-
quency meter set SCR 211 AC. The frequency-meter
peaks were superposed on the absorption peaks, a match
being ascertained by finding the frequency-meter peak which
remained superposed on the absorption peak as the quench
frequency was varied. The frequency measurements are
accurate to =5 ke. Temperatures were measured by a
pentane thermometer and an iron—constantan thermocouple,
both of which had been calibrated at the ice point, Dry Ice
Point, and liquid nitrogen temperature. The temperature
measurements are believed to be good to %=1°.

Where the absorption was strong enough, the resonance
due to C1” was also measured. In other cases the region was
searched where the Cl138 resonance would be expected assum-
ing that the observed absorption was due to C1¥. The ratio
of the quadrupole moments of the two isotopes, Cl1%/Cl1¥,
found from these measurements agrees within the experi-
mental uncertainty with previously published values.5®

The CCL,COOH used was Mallinckrodt reagent grade,
the (CH,CICHO); was synthesized in the organic chemistry
department, and the rest of the chemicals were obtained
from Eastman Kodak Co. In each case the compounds
were used without further purification. All samples of solid
compounds were crystallized from a melt in order to ensure
a maximum number of chlorine nuclei in the absorption
coil. It was found necessary to age the chloral hydrate
sample prepared in this way for about three months and the
(CH.CICHO); sample for about six weeks before absorption
was found.

Experimental Results

The experimental results are summarized in
Table I. It should be noted that in several of the
compounds multiple lines were observed. In
cases where the splitting is small (<0.5 mc.) this is
presumably due to crystallographically non-equiva-
lent chlorines, while the larger separations are pre-
sumably due to differences in the chemical bonding
of the chlorine atoms. Since the frequencies are
temperature dependent, they have been measured
from liquid nitrogen temperature up to either the
melting point of the compound or room tempera-
ture, whichever islower. The temperature depend-
ence of the frequencies observed in the mono-chloro
substituted compounds are plotted in Fig. 1.

Although CCI3;COOH is a solid at room tempera-

(6: R. Livingstou, Phvs. Rev., 82, 289 (1952),



